Автор: Сергей Мороз
Опубликовано: 21.11.2018, 11:17
 

Вектор тяги. К вопросу о двигателях для истребителей пятого поколения

Часть 1. Законы эволюции


[image]

Двигатель - сердце самолета. За этой банальной фразой кроется глубокий смысл, однако она нуждается в некотором уточнении: это не только "сердце", но и "мышцы" летательного аппарата. Да, именно бортовая силовая установка обеспечивает работу электрических, гидравлических и других его "артерий", но ее главное назначение создавать тягу - силу, необходимую для взлета, полета по заданному маршруту, выполнения всех видов маневров и посадки.

Моторы самых первых аэропланов работали на фиксированных оборотах, но как только появилась возможность регулирования их мощности, этот процесс стал неотъемлемой частью управления самолетом в целом.

С достижением сверхзвуковых скоростей и высот значение управления тягой для выдерживания заданной траектории резко возросло, поскольку на многих режимах полета управляющие моменты, создаваемые одними только рулевыми поверхностями, а иногда даже и подъемная сила крыла для этого стали уже недостаточны. Это особенно сильно чувствовалось в таких "пилотируемых ракетах", как советский перехватчик Су-9 Сухого, или американский Локхид F-104 "Старфайтер", не только высотно-скоростные качества которых, но их устойчивость и управляемость определялись в значительной мере именно тягой двигателя.

Весь облик таких самолетов был нацелен на достижение максимальных высот и скоростей, они должны были выполнить перехват сверхзвукового противника в стратосфере, двигаясь почти как баллистическая ракета - "на двигателе". Но практика показала ошибочность такого упрощенного подхода к ведению войны в воздухе. В 1970-е годы началась переоценка ценностей во взглядах на приоритеты в летно-тактических данных самолетов-истребителей. Их скорость и высотность больше не росли, а на первый план вновь вышли показатели маневренности и дальности полета. Некоторые эксперты считали, что теперь не важно, какой будет двигатель, а главное - аэродинамика и весовое совершенство. Однако попытка установки на истребитель IV поколения F-16 одноконтурного двигателя III поколения J79-GE вместо ТРДДФ IV поколения F100-PW-200 привела к такому падению боевых свойств, что от него отказались даже страны "третьего мира". И никто больше не сомневается, что для самолета V поколения и двигатель нужен этого же поколения. Но каким он должен быть?

Новое поколение - новые задачи

В начале 1970-х гг. американская авиапромышленность создала тактические истребители F-15A и F-16A с очень высокими летными данными. Однако появившиеся в ответ советские МиГ-29 и Су-27 сохранили традиционное превосходство в ближнем бою и существенно сократили, а то и свели на нет отставание по дальности полета, возможностям управляемого вооружения и прицельного оборудования. Модернизация F-15 и F-16 ВВС США, как и палубных F-18, шла в направлении наращивания их ударного потенциала и их шансы в воздушном бою против обновленных МиГов и Су, особенно на малых дистанциях, сократились еще более. Потому приступая к разработке следующего поколения истребителей, командование ВВС США во главу угла поставило именно летные данные.

Оно хотело получить устойчивое, сохраняемое длительное время преимущество над советскими самолетами в маневренности, что лишило бы ВВС СССР традиционного превосходства в ближнем бою над линией фронта и гарантировало бы решение задачи захвата господства в воздухе для обеспечения действий ударной авиации. Для этого и был нужен двигатель с управлением вектором тяги, объединенным с системой основного (аэродинамического) управления самолетом.

Вторым аспектом было одновременное сокращение времени реакции и повышения радиуса действия, что давало возможность быстро концентрировать авиацию на решающем направлении. Первое традиционно достигалось уменьшением времени подготовки к боевому вылету, но уже к середине 70-х гг. здесь резервы были исчерпаны. Трудозатраты по обслуживанию на один час полета самолета-истребителя достигли низшего возможного предела: для F-15A они сократились до 11,3 часа, что было вдвое ниже, чем на самолете F-4E, и в 2,8 раза ниже, чем на F-4C. Даже на 1 час полета поршневого истребителя Р-51 "Мустанг" времен II мировой войны надо было тратить 15 часов труда техсостава! Оставалось увеличивать крейсерскую скорость до сверхзвуковой - у F-15A, например, она была лишь 930 км/ч. Это попутно дало бы и тактические преимущества при вступлении в воздушный бой.

Чтобы увеличить радиус действия обычно старались снизить километровый расход топлива и увеличить объем баков. Дозаправка в полете не касается нашей темы, а эти пути непосредственно связаны с совершенствованием двигателей. Чтобы они тратили как можно меньше керосина на километр, повышали степень сжатия входящего воздуха в компрессоре, температуру в камере сгорания (перед турбиной), разделяли роторы на два (высокого и низкого давления), наконец, перешли на двухконтурные двигатели с форсажной камерой - ТРДДФ.

Но за выгоды ТРДДФ на дозвуковых крейсерских режимах приходилось платить ухудшением характеристик на режимах боевых, а проценты дальнейшего снижения расхода топлива давались все труднее. Оставалось убирать непроизводительные его потери, повышая точность регулирования режима работы, но это какие-то проценты, или же переходить на сверхзвуковой крейсерский режим.

Еще с начала 50-х гг. советские самолеты Су-7 и Су-9, или английские "Лайтнинг" могли ходить на сверхзвуке без включения форсажа, но и при этом их дальность все равно получалась очень маленькой. Форсажный крейсерский сверхзвуковой режим более был получен на МиГ-25 с низконапорными одноконтурными ТРДФ, а затем на МиГ-31 с ТРДДФ. Но радиус действия этих крупных и тяжелых машин был таким в основном не благодаря высокой экономичности двигателей, а за счет объема баков. Для маневренных истребителей этот путь не годился - нужны были принципиально новые конструкции авиационных двигателей.

И последним средством достижения превосходства в воздушном бою должна была стать концепция "первым увидел - первым выстрелил". Если ранее она реализовалась за счет большей дальности действия радиолокационной станции и ракет, то на поколении IV эти параметры у советских и американских истребителей сравнялись, и американцами ставка была сделана на ограничение демаскирующих признаков путем внедрения технологий "стелс" в конструкции и самолетов, и их силовых установок. В таком ключе в США были задуманы программы создания истребителей ATF и двигателей AFE поколения V.

По итогам конкурса для серийного выпуска были отобраны истребитель F-22A "Раптор" концерна "Локхид - Мартин", о котором мы писали в № 4 и 5 нашего журнала за 2008 г., и двигатель Пратт-Уитни F119-PW-100. Он был рассчитан на крейсерский полет с числами М=0,8...1,5 на высотах 60...16000 м и на ведение маневренного воздушного боя при М=0,5...1,8 на тех же высотах. При выполнении перехвата число М могло расти до 2,0...2,2, а высота полета - до 18000 м.

Для советских истребителей V поколения Сухой С-22/С-32/С-37 и Микоян 1.44/1.42 были созданы двигатели Д30Ф9 и АЛ-41Ф, которые представляли собой глубокие модификации серийных ТРДДФ IV поколения Д30Ф6 и АЛ-31ФП. Зоны их крейсерских режимов должны были быть такими же, как и у "американца", но боевые были расширены вправо и вверх - до М=2,3...2,5 и Н=18000...22000 м с возможностью маневрирования там со значительными углами атаки и перегрузками.

Так получалось, что первый ход в создании IV и V поколений самолетов истребительной авиации делала Америка. Хорошо это или плохо для ее вероятного противника - для СССР, а теперь для России? Конечно, что хорошего в постоянном отставании? Но с другой стороны такая ситуация позволяла перенимать готовые удачные решения и учитывать чужие ошибки, строя свой ответ с учетом их. Действительно, ни в одном из этих случаев Америке не удалось сделать так, чтобы ее противник был вынужден пассивно следовать предложенным правилам игры и пытаться просто повторить то, что она делала, чтобы выдержать лишь симметричный паритет. Это касается и создания двигателей для самолетов истребительной авиации.

И первые советские истребители V поколения 1.44, разработанный ОКБ им. Микояна, и Сухой С-37, и сегодняшний Т-50, при всем сходстве поставленных задач и отдельных инженерных решений не являются попыткой повторить американский F-22 - об этом мы недавно подробно говорили. То же самое можно сказать и об их силовых установках.

Новые задачи - новые решения

Как только на самолетах III поколения, например, на F-111, стали видны недостатки ТРДДФ, начался поиск путей их устранения либо создания двигателей другой схемы. Конструкторы рассматривали силовые установки комбинированные и изменяемого цикла, одноконтурные многовальные ТРДФ, двигатели с выносными компрессорами ("двухтрубные") и вовсе без форсажных камер и т.д., однако и сегодня большинство истребителей (за исключением F-35B с вертикальной посадкой - его ТРДДФ F135-PW-600 имеет выносное устройство вертикальной тяги и отклоняемое сопло - не путать с изменением вектора тяги для улучшения маневренности) все еще оснащены "обычными" ТРДДФ. Но их компоненты эволюционируют очень заметно, и именно это обеспечивает этому классу двигателей такое долголетие.

Естественно, пути этой эволюции в России и в США отличаются, что определяется различиями в поставленных задачах. Но вместе с тем в них есть и много общего. И в Америке, и в России при создании двигателей V поколения сохранились тенденции уменьшения двухконтурности при повышении степени сжатия в компрессоре, увеличения оборотов и температуры газов на выходе из основной камеры сгорания, а также роста удельных характеристик за счет и тяги без ограничения, а то и с наращиванием ресурса двигателя. Это достигается как обычно - путем улучшения способов смазки и охлаждения деталей, а также использованием новых материалов и технологий их обработки.

Рассматривались различные способы снижения массы и размеров двигателя как за счет более рациональной конструкции каждой детали, так и путем уменьшения числа ступеней компрессора и турбины. Если ротор ТРДДФ IV поколения в сумме имел 17...14 ступеней, то на V поколении их только 11…12, но при этом не удалось сократить ни длину, ни массу двигателя, потому что "работали против этого" другие факторы, определившие их рост.

Например, значительное расширение области возможных режимов работы (как крейсерских, так и боевых) потребовало полной переделки компрессора, как элемента наиболее чувствительного к свойствам входящего потока.

Когда разработка двигателей V поколения только начиналась, большое внимание уделялось снижению эффективной площади рассеивания (ЭПР), демаскирующего признака при облучении радиолокатором. Намеревались делать лопатки из композитов со сложной внутренней макроструктурой, наносить на них радиопоглощающее покрытие или профилировать их так, чтобы отраженные сигналы взаимоподавлялись. Но все это оказалось слишком сложно, и обошлись "радар-блокером" - сравнительно простым подавляющим сигнал РЛС устройством, которое стоит перед входным направляющим аппаратом компрессора (ВНА) и за стабилизаторами пламени форсажных камер. Естественно, за малозаментость пришлось заплатить ухудшением газодинамики и увеличением веса, пусть и небольшим.

Можно ли обойтись без радар-блокеров как отдельных агрегатов и снизить ЭПР двигателя? Теоретически да - если найти такую форму устройств защиты воздухозаборников от попадания посторонних предметов и стабилизаторов пламени в форсажной камере, которая бы обеспечила совмещение разных функций в одном агрегате без существенной потери качества их исполнения и роста массы. Фактор материала здесь, по-видимому, мешать не будет - он один и тот же. Делается ли это? Не берусь утверждать, но на двигателе АЛ-41Ф1С отдельных радар-блокеров в форсажной камере нет.

Для двигателей V поколения в СССР и в США были созданы трехступенчатые компрессоры низкого давления (КНД) с регулируемым и входным направляющим аппаратом (ВНА) и широкоходными лопатками, спрофилированными так, чтобы исключить помпаж и зуд без перепуска воздуха, вызывающего потери давления, увеличивающего ЭПР и усложняющего конструкцию. Чтобы удовлетворить этим требованиям и достичь заданных выходных характеристик пришлось пойти на рискованные решения. Отказ от антивибрационных полок улучшил газодинамическое качество лопаток КНД, снизил и ЭПР и массу, но чтобы обеспечить их жесткость пришлось предпринимать другие меры, пойдя на усложнение и удорожание технологии.

Особенностью американского двигателя F119-PW-100 является то, что часть потока сравнительно холодного воздуха от КНД идет мимо камеры сгорания, как это сделано в турбовентиляторных двигателях без смешения потока транспортных самолетов. Этот воздух охлаждает створки агрегата УВТ и "окутывает" горячую часть реактивной струи, но остальное направляется в основную камеру сгорания (ОКС) и далее уже в виде горячего газа после сгорания топлива в ней топлива - в форсажную камеру сгорания (ФКС).

Такой отбор воздуха, естественно, ведет к ухудшению тяговых и расходных показателей двигателя. В СССР, а затем в России технологиям "стелс" не придавалось такого значения, но и там пришлось отбирать часть воздуха на охлаждение сопла. Правда, по другой причине - для обеспечения его работы при отклонении вектора тяги на большой угол.

Компрессор низкого давления IV поколения имел 9-10 ступеней, а V поколения - только 6. Относительное удлинение его лопаток уменьшилось, что позволило повысить их газодинамическую эффективность и прочность.

Конструкторы американской фирмы "Дженерал Электрик" в своем варианте двигателя AFE (YF120-GE) пытались регулировать пропорцию расходов воздуха через контуры низкого и высокого давления путем изменения газодинамических свойств трактов в целом. Их двигатель на режиме максимальной тяги, при разгоне с числом M)1 и в сверхзвуковом крейсерском полете должен был работать как "чистый" одноконтурный ТРД, а при крейсерском полете на дозвуке и на снижении и т. д. - как ТРДД. Но это оказалось слишком сложно и дорого, что и стало одной из главных причин проигрыша в конкурсе.

Московское НПО "Сатурн" тоже делало свой ТРДДФ V поколения как двигатель изменяемого цикла, но пошло по другому пути. Регуляция потоков происходит в камере, где они смешиваются, что и позволило, хотя и не сразу, успешно решить эту очень сложную задачу.

Новинкой российского двигателя является плазменная система зажигания ОКС. Она более надежна как для обеспечения работы двигателя в момент пуска ракет, так и при его запуске в полете после аварийной остановки, что является "больным" вопросом на двигателях с широкоходным КНД.

Американским ноу-хау в области обеспечения ресурса основных камер сгорания являются "плавающие теплозащитные стенки", а также в ее конструкции применен новый сплав с увеличенным содержанием кобальта, который имеет повышенную сопротивляемость термической коррозии. В то же время опыт показывает, что ОКС не является тем элементом, который в первую очередь определяет ресурс двигателя. Другими словами, камера сгорания после наработки положенных тысяч часов будет в хорошем состоянии, но его все равно надо будет отправлять на капремонт, т.к. этого будут требовать другие узлы. Но о ремонте - чуть ниже, а пока идем дальше по двигателю и попадаем в турбину.

Число ступеней турбин высокого и низкого давления на ТРДДФ V поколения уменьшено до минимума - до одной в каждом каскаде (раньше их обычно было по две). Это самая нагруженная и теплонапряженная часть ТРДДФ, потому лопатки ТВД на двигателях IV поколения сделаны охлаждаемыми. Теперь нагрузка на каждую лопатку выросла, тем не менее, они стали неохлаждаемыми, что исключило необходимость отбора воздуха от компрессора, упростив конструкцию двигателя.

Но стоимость от этого не уменьшилась, а наоборот - резко выросла. В 70-е гг. изготовление неохлаждаемых лопаток турбин шло по пути внедрения технологий их "выращивания" как монокристаллов, но это оказалось дорого даже для одной лопатки - детали сравнительно небольшой. А теперь для снижения массы и исключения потерь давления за счет перетекания потока по стыкам лопаток и дисков рабочих колес компрессоров и турбин они делаются цельными. В США это называется Integrally Bladed Rotor - IBR. Попробуем представить, как вырастить монокристалл размером около метра! И сколько это будет стоить…

Потому пришлось вернуться к тому, от чего пытались уйти - к литью или к порошковой металлургии, поскольку штамповку, техпроцесс, оптимальный с точки зрения ресурса, нельзя применить из-за перекрытия лопаток, установленных плотно, с малым угловым шагом. Так можно сделать только заготовку для интегрального рабочего колеса. Да и допуски на размеры здесь таковы, что обойтись без последующей мехобработки отливки или порошковой детали не получается. И теперь представим: фрезерный станок с ЧПУ на минимальной подаче обрабатывает одну за другой десятки поверхностей двойной знакопеременной кривизны и каждая - под своим исходным углом, да еще перекрывающие друг друга! Может быть решение этой технологической проблемы будет найдено с развитием 3D-принтеров? Но обеспечат ли они длительное сопротивление такого рабочего колеса температурным и силовым нагрузкам, износу от механического трения и сверхбыстрого потока очень горячих газов с частичками сажи?

Валы роторов низкого и высокого давления ТРДДФ V поколения установлены на несмазываемых подшипниках и имеют противоположное направление вращения. Зазоры между нагруженными потоком и центробежной силой, нагретыми до температуры более 1500°С лопатками турбины и стенками проточной части должны быть минимальны. Так пытались сделать еще на ТРДФ III поколения J79-GE и АЛ-21Ф, но тогда столкнулись с явлением "титанового пожара". Изготовленные из этого материала лопатки под действием центробежных сил и высоких температур вытягивались, чиркали на своей огромной скорости о стенки канала и температура там подскакивала настолько, что он мгновенно возгорался. Пришлось материал лопаток и стенок каналов заменить на более тяжелую сталь, а вдоль их "дорожек" на внутренней стороне каналов проложить термостойкое спецпокрытие.

Сама форсажная камера сгорания при создании двигателей V поколения не претерпела значительных изменений, однако надо помнить, что их тяга существенно выросла, соответственно увеличились силы и температуры, действующие в ней. Единственным конструктивным новшеством стали радар-блокеры, аналогичные установленным перед ВНА. Но в ФКС они включены в конструкцию, работают в горячем потоке и должны не только не ухудшать, но и стабилизировать процесс горения истекающей с огромной скоростью топливовоздушной смеси.

Самым заметным внешним отличием российского двигателя V поколения АЛ-41Ф1 и американского F119-PW-100 является сопло со всеракурсно изменяемым вектором тяги. Конструкторы и в России, и в США вот уже много лет работают в этом направлении. Еще в СССР были проведены сравнительные испытания управляемого двумерного (плоского) и осесимметричного сопла со сферическим шарниром на летающих лабораториях на базе самолета Су-27. Они показали, что "круглый" вариант не только дает меньшие потери давления на прямом сопле и при перекладке, но при этом позволяет всеракурсное управление, тогда как плоское сопло дает возможность отклонять вектор тяги только в одной плоскости. И при этом было найдено такое решение поворотного узла, которое обеспечило существенный выигрыш в стоимости, массе, размерах и внешней аэродинамике этого агрегата по сравнению с "плоским" вариантом.

Американцы до такого при проектировании двигателей V поколения додуматься не смогли. Аналитики, рассматривающие достоинства двигателя F119-PW-100 самолета F-22A, объясняют выбор "плоского" сопла тем, что оно имеет пилообразные кромки, снижающие ЭПР. Однако уже давно очевидно, что значение этого аспекта в свое время было непомерно раздуто. Следующий истребитель V поколения F-35/JSF имеет двигатель с осесимметричным соплом - типа F135-PW. От российского АЛ-41Ф1 оно отличается "зубчатой" кромкой для снижения заметности и отсутствием управления вектором тяги.

Отклонение тяги вниз на режиме посадки есть у двигателя F135-PW-600 - оно чем-то напоминает советский ТРДДФ Р-79 разработки 1980-х гг., но потери давления в нем вероятно выше, судя по "угловатому" характеру изгиба канала из-за примитивной его конструкции. Опять же, такое управление не годится для улучшения маневренности в бою.

Усложнение управления двигателем с изменяемым вектором тяги, необходимость его объединения с процессом управления полетом в целом потребовала сделать следующий шаг в развитии соответствующих систем силовой установки. Двигатели IV поколения имели электронно-гидромеханическую систему регулирования, которая могла строится как на базе полноценного цифрового компьютера, так и достаточно простого аналогового вычислителя. Такая электроника лишь корректировала режимы, задаваемые полностью пилотом, перемещавшим рычаг управления двигателем (РУД), то теперь за ЭВМ закреплена основная роль. Особенностью V поколения ТРДДФ является электронная (цифровая) система управления с полной ответственностью. На Западе ее называют FADEC - Full-Authority Digital Electronic (engine) Control.

На двигателе F119-PW-100 самолета F-22A она состоит из двух блоков управления на каждом двигателе - один рабочий и один резервный. В каждом блоке есть два канала, каждый - со своим компьютером, и таким образом каждый из двух двигателей американского истребителя теоретически имеет один работающий и три резервных канала управления. Российский АЛ-41Ф1 оснащен таким же цифровым управлением с полной ответственностью с элементами распределенных параметров.

И последнее. Все описанные компоненты выше объединяет корпус. Особенность любого реактивного двигателя заключается в том, что весь он в большей или меньшей степени нагружен силами, вызванными его тягой, и к тому же местами нагрет до очень немаленьких температур. Но грамотная конструкция, учитывающая реально действующие напряжения в его материале в каждом месте, может быть достаточно легкой. Но не дешевой.

При создании корпусов ТРДДФ давно используются методы компьютерного проектирования. Они делают прочностные и тепловые расчеты по методам конечных элементов, позволяющим оптимизировать выбор сечений и материалов деталей. Переход на крупногабаритные панели одновременно усложняет и упрощает это: увеличивается количество обсчитываемых элементов, но уменьшается число связей между деталями и реакций в них.

В результате формы частей корпуса становятся все сложнее, а требования к точности - все выше. Их уже не может обеспечить ни литье, ни штамповка, ни порошковая металлургия и приходится применять механическую обработку там, где раньше обходились "без стружки".

Ну и последнее - материалы. Например, корпусные детали F119-PW-100 вновь делают из титанового сплава, причем из специального - в США он именуется Titanium C-Alloy. Да, титан легче стали примерно вдвое при той же прочности, но он в разы дороже, труднее обрабатывается, имеет проблемы со сваркой и температурными деформациями.

Как видим, трудностей на пути создателей двигателей для истребителей V поколения было множество, и причем мы перечислили их не все. И тем не менее, они их преодолели. Как - мы узнаем во второй части статьи.

 
Ссылки по теме:
Дайджест прессы за 21 ноября 2018 года | Дайджест публикаций за 21 ноября 2018 года
Авторские права на данный материал принадлежат журналу «Наука и техника». Цель включения данного материала в дайджест - сбор максимального количества публикаций в СМИ и сообщений компаний по авиационной тематике. Агентство «АвиаПорт» не гарантирует достоверность, точность, полноту и качество данного материала.
Связи: ОДК-Сатурн (в процессе тестирования)